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T -Fuzzy Observables 
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Observables are defined as homomorphisms from the Borel a-algebra into a 
family of fuzzy sets considered with respect to the Giles connectives. Algebraic 
operations with observables are introduced and their relation to the correspond- 
ing operations with fuzzy random variables is explained. 

1. INTRODUCTION 

In Koles~rov~i and Rie~an (1992) we introduced for any measurable 
t-norm T on (0, 1) 2 a T-fuzzy observable as a mapping x from g ( R )  into 
a generated fuzzy o--algebra z of fuzzy subsets of a given universum fl, 
satisfying the following properties: x(E c) = x ( E ) ' =  1 - x ( E )  for each 
EeB(N) and x(U,,~N En) = Sn~u(x(En)) for each sequence {En },~u c N(N), 
Ei ~ ~ = 0 for i r  (S denotes a dual t-conorm of T). 

We have shown that if T is an Archimedean t-norm, then x also 
preserves a maximal and a minimal element (Koles/trovfi and Rie6an, 1992, 
Proposition 1), i.e., x is a homomorphism from g (N )  into r. If  T is a strict 
t-norm, then any T-fuzzy observable x is an inverse of  a crisp random 
variable (Kolesfirovfi and Rie~an, 1992, Proposition 2). So, the most 
interesting are T-fuzzy observables which are induced by Archimedean 
nonstrict t-norms. Since each Archimedean nonstrict t-norm T can be 
obtained by a transformation of  the fundamental t-norm 1~ ,  7~ (x, y) = 
max(x + y - 1, 0), we will pay attention only to the To~-fuzzy observables 
[for more details about t-norms see Schweizer and Sklar, (1983) or 
Kolesfirov~i and Rie6an, (1992)]. 
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The t-norm T o induces the Giles bold intersection of fuzzy sets: 
uc~v = max(u + v -  1, 0) corresponding to the Lukasiewicz conjunction. 
(Recall that a fuzzy subset u of a universum f~ is a mapping u: f ~  (0, 1)). 
The dual t-norm S ~ , S ~ ( x , y ) = m i n ( x + y ,  1) induces the Giles bold 
union of fuzzy sets: u~v  =min(u  +v ,  1). Throughout this paper just 
these fuzzy connectives will be used. Note that mentioned fuzzy connec- 
tives were proposed by Pykacz (1991) for fuzzy modeling of quantum 
mechanics. 

2. To-FUZZY OBSERVABLES AND THEIR CALCULUS 

Let (Q, 5 P) be a measurable space, i.e., let ~ be an arbitrary nonempty 
set and let 5p be a a-algebra of its crisp subsets. Let z c (0, 1)n be a 
generated fuzzy a-algebra, i.e., the system of all 5 p - ~ ( ( 0 ,  1)) measurable 
fuzzy subsets of ~. 

Definition I. A mapping x: ~ ( ~ )  ~ ~ is said to be a To-fuzzy observ- 
able if: 

(i) 
(ii) 

x(E C) = x(E)'  = 1 - x ( E )  for each E ~ ( R ) .  

for each sequence {En},~uC~(~) ,Eic~Ej=O for i ~ j .  [~3(E) is the 
system of all Borel subsets of the real line.] 

Since To is an Archimedean t-norm, To~-fuzzy observables have the 
following property (Kolesfirovfi and Rie6an, 1992, Proposition 1). 

Lemma 1. Let x be a To~-fuzzy observable. Then x ( E ) =  In and 
x(O) = o~. 

This means that a To~-fuzzy observable is a a-homomorphism. 
Moreover, property (ii) in Definition 1 can be expressed in the following 
form: 

Lemma 2. Let x be a To-fuzzy observable. Then for each sequence 
{En},~u ~ M(N) such that EinEj  = 0 for iv a j, it holds that 

n ~ N  n ~ N  

Proof. See the proof of Proposition 3 in Koles/trov/t and Rie~an 
(1992, (iii)). �9 
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Each T~-fuzzy observable x induces a system q / =  { x ( ( -  ~ ,  t)); t ~ }  
o f  fuzzy subsets which has these properties: 

(P1) x ( ( - o v ,  t ) ) =  supr~Q,r<, X ( ( - - ~ ,  r)), where Q is the set o f  all 
rat ional numbers.  

(P2) infr~Q x(( - oo, r)) = 0. 
(P3) supr~Q x(( - ~ ,  r)) = 1. 
Conversely, each system ~ = {u, ; t  ~ }  o f  fuzzy subsets o f  T fulfilling 

the properties ( P 1 ) - ( P 3 )  determines a T~-fuzzy observable x given by 

x(( - ~ ,  t)) = u,, t ~ 

Note  that  -c is a closed system under  countable  infima and suprema 
(Butnar iu  and Klement,  1991). 

Let x and y be T~-fuzzy observables. Let us put  

z, = V [x(( - c~, r)) A y(( -- ~ ,  t -- r))] (1) 
r~Q 

Lemma 3. The system ~ = {z,; tE~}  ~ z fulfills the properties ( P 1 ) -  
(P3 ) .  

Proof (i) The proper ty  zt = SUpr~Q,r<tZr follows immediately f rom 
the proper ty  (P1) o f  To-fuzzy  observables x and y and equat ion (1). 

(ii) Let o9 be an arbi t rary but  fixed element o f  fL Since x is a To~-fuzzy 
observable, it fulfills the proper ty  (P2) and therefore for each e > 0 there 
exists q~Q such that 

0 -< x(( - 0% ql ))(o9) < 

As x is mono tonc ,  

8 
x(( - oo, q))(og) < ~ holds for each q -< ql 

Analogously  for a To~-fuzzy observable y we get 

y(( - o% q))(o9) < -~ for each q < q2 

Let us put qo = min(ql,  q2). Let r e Q .  Then either r -< qo or  q0 < r. I f r  < qo, 
then 

x( (  - oo, r))(og) < 

I f  qo < r, then 2qo - r < qo and therefore 

y(( - 0% 2qo - r))(og) < 
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This means that 

x(( - 0% r))(co) A y(( -- 0% 2qo -- r))(co) < -- 
2 

for each r ~ Q. Therefore 

Zzqo(c~ = V ix(( - 0% r))(co) A y(( -- 0% 2qo -- r))(co) < ~ < 
r~Q 

We have just shown that  for each e > 0 there exists ~ = 2qoeQ such that  

0 -< z~(~o) < 

and so infq~Q z u = 0 and the proper ty  (P2) is true. The proper ty  (P3) can be 
proved analogously.  [] 

Since the system ~ fulfills the properties ( P 1 ) - ( P 3 ) ,  according to the 
previous par t  it determines uniquely a T~-fuzzy observable z given by 

z(( - 0% t)) = z, = V [x(( - 0% r)) A y(( -- 0% t -- r))] (2) 
r~Q 

for each t e N. 

Definition 2. A Too-fuzzy observable z defined by (2) is called a sum of  
Too-fuzzy observables x and y:  z = x + y. 

Remark 1. A similar approach  was used by Dvure6enskij and Tir- 
p/tkov~t (1988) for introducing a sum o f  two To-fuzzy observables. Note  
that in this case the Zadeh fuzzy connectives were used, To-fuzzy observ- 
ables are not  complete homomorph i sms ,  up to the crisp case. 

In the next par t  we will show how it is possible to introduce other  
operat ions for T~o-fuzzy observables. 

Let h: R ~ R be a Borel-measurable funct ion and let x: ~ ( N )  ~ z be a 
T~-fuzzy observable. Then a mapping  hx: r162 ~ z defined by 

h x ( g )  = x ( h  - I(E)), E e ~ ( ~ )  

is again a To<fuzzy observable. For  example, 

cx(E) = x({t eR;  ct~E}),  cER (3) 

In particular 

- x ( E )  = x({ t~R:  - t e E } )  = x ( - E )  (4) 

That  is why we are able to introduce a difference and a produc t  o f  two 
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T~-fuzzy observables x and y, following the ideas o f  von N e u m a n n  for 
observables and Dvure6enskij for To-fuzzy observables, in this way: 

x - y = x  + ( - y )  (5) 

1 _ _ X  2 x . y  = 5 [ ( x  + y ) 2  _ y 2 ]  (6) 

Defini t ion 3. Let x and y be T~-fuzzy observables. An  observable x is 
dominated by an observable y :  x < y ,  if 

x ( ( -  oo, t)) > y ( ( -  oo, t)) for each t s[R 

Let us note that if u, v are two fuzzy sets, then u <- v ~> u(co) <- v(o)) 

for each co ef~. 
A Too-fuzzy observable x0 will be called the zero observable if 

Xo({0}) = ln. In other words, if 

(E) = ~'0~ 0 r E 
Xo [ In 0 e E  

for each E ~ ~ ( ~ ) .  
Evidently x o = - x  o = x~. Note  that x = - x  does not  imply x = x o. 

Further,  since 

On t -< 0 
X o ( ( - ~ , t ) ) =  In t > 0  

{0~ t -< 0 
X2(( -- 00' t)) = X(( --X/~, X//t)) --< In t > 0  

then for each T~-fuzzy observable x it holds that Xo < x  2. 
I f  x 0-< x we shall also use the expression: an observable x is nonnega-  

tive. 
Finally, the sum o f  a Too-fuzzy observable x and the zero observable 

xo is given by 

(Xo + x ) ( (  - o o ,  t))  = ~ / [ X o ( (  - o o ,  r ) ) / ,  x ( (  - ~ ,  t - r))]  
reQ 

I f  r <- 0 then Xo(( - 0% r)) = On and so it is enough to deal with r e Q ,  r > O. 

So, let r > O. Then xo(( - or, r)) = In and xo(( - oo, r)) /x x(( - 0% t - r)) 
= x ( (  - o o ,  t - r ) ) .  

Therefore 

( x 0  + x ) ( (  - o o ,  t ) )  = V x ( (  - o o ,  t - r ) )  = x ( (  - ~ ,  t ) )  
r~Q 
r>0  

for each t e ~  and this means that  the equality Xo + x = x holds for each 
Too-fuzzy observable x. 
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3. F U Z Z Y - V A L U E D  R A N D O M  VARIABLES 

Following the ideas of H6hle (1976, 1981), Rodabaugh (1982), and 
others, Klement (1985, 1987) introduced the concept of fuzzy-valued 
functions. We recall some basic notions. Let ~ = R w { - ~ ,  + ~ }  and 
I = (0, 1). The extended fuzzy real line N(I) is the set of all functions 
p: N ~ I  such that: 

(i) p( - ~ )  = 0 and p( + or) = 1. 
(ii) p(r) = sup{p(s); s < r, seN} for each reN. 

Note that a fuzzy real number p e N(I) is a cumulative distribution 
function on ~. A fuzzy number p can be interpreted as follows: p(r) is a 
degree at which p is less than (nonfuzzy) number r. A nonfuzzy number r 
is identified with the characteristic function of the set (r, ~ ) .  A fuzzy 
number p is said to be finite if inf{p(r); reR} = 0 and sup{p(r); r e~}  = 1. 
A finite fuzzy number is a cumulative distribution on N and vice versa. The 
set of all finite fuzzy numbers will be denoted by ~(I). 

The partial ordering /_ on ~(I) is given by 

p / u  ~ Vre~: p(r) >-u(r) (7) 

Now, let f :  (a, b)--+(c, d)  be a nondecreasing function, left-continu- 
ous in (a, b) with f ( a ) =  c. Then the quasi-inverse of f is a function 
[f]q: (c, d)  ~ (a, b)  defined by 

[f]q(s) = sup{re(a,  b); f (r)  < s}, for se(c, d)  

[f]q(c) = a 

The quasi-inverse o f f  is again a nondecreasing function, left-continu- 
ous in (c, d) and [[f]q]q =f .  The set of all quasi-inverses of fuzzy numbers 
peN( I )  will be denoted by Nq(I). 

Due to the fact that the mapping q: p ~ [p]q is an involution from 
N(I) onto Nq(I), it is possible to introduce an algebraic structure on ~(I) 
as follows: 

Let p, u e ~(I). Then 

p/_u ~ [p]q(~) < [u]q(a) for all ~ e I  (8) 

[p �9 ulq(a) = [p]"(~) + [u]q(a) (9) 

[p | u]q(a) = sup{[p +]q(fl) �9 [u +]q(fi) + [p +]q( 1 - fl) �9 [u -]q(fl) 

+ [p--](/3) �9 [u+]q(1 -/~) + [p-]q(1 - fl) �9 [u-]q(1 - / / ) ;  

/~ <~} (10) 
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where 
(p, r < 0  

p +(r) = (r), r > 0 

r r <- 0 
p- ( r )  = e''(1, r > 0 

The previous formulas for p |  and p |  can be used if their 
right-hand sides make sense. 

~(I)  can be considered as a subspace of (0, 1} ~. Thus we can equip it 
with the product a-algebra and it makes sense to consider measurable 
functions X: f)--* ~(I),  which we will call fuzzy-valued random variables 
(measurability of these functions is defined as usual). 

By Proposition 2.1 in Klement (1975), the measurability of a func- 
tion X: f l o  ~(1) is equivalent to the existence of a Markov kernel Y 
from (gt, 5 P) to ( ~ , ~ ( ~ ) )  such that for all (co, t )Ef2x  ~, X ( c o ) ( t ) =  

s ( ~ ,  ( -  ~ ,  t)). 
Note that Klement (1975) deals only with nonnegative fuzzy numbers. 

The extension to ~(I)  is evident. 

4. FINITE FUZZY-VALUED RANDOM VARIABLES AND 
T~-FUZZY OBSERVABLES 

There exists a one-to-one correspondence between finite fuzzy-valued 
random variables [i.e., with values in E(I)] and T~-fuzzy observables 
[proved in Kolesfirovfi and Rie6an (1992)]. The correspondence between a 
T~-fuzzy observable x: : ~ ( ~ ) - * r  and a fuzzy-valued random variable 
X: f~--* ~(I) is expressed by the formula 

X(cn)(t)  = x(( - oo, t)(co) (11) 

for each t s ~  and c o ~ .  
The reciprocal correspondence between x and X will be denoted by 

x *--~X. 

Now, let X,,, a e ~, be a fuzzy random variable defined by 

x~(~) = G , ~  

for each co ~f2. 
Due to (11), a fuzzy random variable Xa corresponds to a T~-fuzzy 

observable xa which is given by xa({a}) = 1~. 
In particular, for a = 0 we get the zero observable x0. 
Let x ~ X, y *-~ Y. Let x + y be the sum of  T~-fuzzy observables x 

and y created by (2) and let X + Y be the sum of  fuzzy random variables. 
Its value (X + Y)(co) = X(co) �9 Y(co) is defined by (9). 
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Theorem 1. Let x ~ X and y ~ Y. Then x + y  <--* X +  Y. 

Proof  It is necessary to prove that  for each ~o~f~ and t~[R, 

( x  + r)(~o)(t) = (x  + y) ( (  - o% t))(~o) 

For  simplicity let us denote X ( c o ) = p ,  Y(~o)=s ,  ( p O s ) ( t ) = 7 ,  and 
(x + y)(( - oo, t))(~) =/3. This means we have to prove fl = 7. 

(i) According to (2), we have 

/3 = V i x ( (  - oo ,  r ) ) ( ~ )  A y ( (  - ~ ,  t - r))(~o)]  
r~Q 

From the properties o f  the supremum we get that  for each e > 0 there exists 
r~ ~ Q such that  

x ( (  - ~ ,  r p ) ( ~ o )  A y ( (  - ~ ,  t - r D ) ( @  > / 3  - e 

I f  we take into account  the assumption x ,--, X, y ~ Y and the introduced 
designation we get 

p(rt) A s(t - r,) > fl - e  (12) 

Further,  

7 = (P |  -- [[P |176 

-- sup{<  [p | s]4(~) < t} 

-- sup{a; sup{u;p(u)  < ~} + sup{v; s(v) < ~} < t} (13) 

I f  we take into account  (12), we get 

sup{u; p(u) < fl - ~} < r~ 

s u p { v ;  s ( v )  < ~ - ~}  < t - r t  

and s o / 3 -  e~{:r [p]O(@ + [s]O(@ < t}. 
Therefore/3 - e -< y. Since the last inequality holds for  each e > O, we 

have 

/3 <--7 (14) 

(ii) For  each ~ > 0 there exists ~ > ? - g such that 

sup{u; p(u) < e~ } + sup{v; s(v) < ce~ } < t 

[this fact follows f rom (13)]. 

Let us put  sup{u;p(u) < ~ } = u o and sup{v; s(v) < a~} = Vo. Then we 
can write uo + v0 < t, p(Uo) >- at, S(Vo) 2 a t. Moreover ,  for each 6 > 0, 

p(uo + 6) >- ~ and s(v o + 6) >-_ c~, 
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We can choose such r e Q that 

Uo < r and Vo < t - r 

For  this value we have 

p(r) A s( t  -- r) > ~ 

and therefore fi -> c~. 
Since c~ > ~ - ~, we get the inequality B > 7 - e, which holds for each 

> 0. Therefore fi >__ 7- 
The last result together with (14) mean that the assertion of  Theorem 

I is true. [] 

Let us notice the ordering of fuzzy-valued random variables, in 
connection with ordering of T~-fuzzy observables. It holds that 

X <-- Y ~ X(co)/_ Y(co) for each co ef~ 

By (7), X(co)/Y(co) ~:~ X(co)(t) > Y(co)(t) for each teN,  and this is the 
same as 

x(( - oo, t))(co) - y(( - oc, t))(co) 

This means that the observable x is dominated by the observable y. So 

X <<_ Y .,~ x -< y (15) 

In contrast with the sum and ordering, in general the product of fuzzy 
random variables X" Y does not correspond to the product x . y  of 
T~-fuzzy observables x, y introduced by (6) (for x ~ X, y ~ Y). Some 
other facts show that it is not suitable to use the product of To~-fuzzy 
observables defined by (6). 

Let x be an arbitrary nonnegative and noncrisp T~-fuzzy observable 
(this means that xo-< x and there exists a set E e N ( R )  for which x ( E )  is not 
a crisp subset of f~). It can be shown that for such To~-fuzzy observables the 
equality x 2 =  x . x  does not hold. Note that x 2 is a T~-fuzzy observable 
created by (3) and x . x  by the formula (6). 

E x a m p l e  I. Let f~ = {co}. Let x be an observable for which 

i if t - 1  
x ( ( - o e ,  t))(co) = if t~(1, 3) 

if t > 3  

Then by (3) 

t i  if t < l  x 2 ( ( - o e ,  t))(co) = if t e ( 1 , 9 )  

if t > 9  
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Using the formula  (6), we obta in  

x . x(( - ~ ,  t))(co) = t i  
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if t < - 7  

if t s ( - 7 ,  17) 

if t > 1 7  

These results show that  for the chosen observable  x the equali ty x �9 x = x 2 
is not  true. 

Proposition I. Let x be a nonnegat ive  Too-fuzzy observable  and let X 
be a finite fuzzy r a n d o m  variable corresponding to x. Then  X -  X ~ x 2. 

Proof. Let cosf~ be an arbi t rary,  but  fixed element. Since Xo-<X it 
holds that  x(( - 0% t))(co) = 0 for  each t < 0. Therefore  

0 if  t < 0 (16) 
xZ(( - c~ ,  t))(e)) = x(( - , , / ~ ,  x/rt))(co) = x(( - 0 %  x//t))(co) i f t  > 0 

Let us denote  X .  X = i "2. F r o m  the assumpt ions  x 0 -<x  and X ~ x we 
have 1,o < X and therefore X + ( ~ o ) =  X(co) and 1 , - ( c ~ ) =  l(o.oo~. Then  ac- 
cording to (10) it holds that  

[x2(o~)]q(e) = [x(co)]q(e)  �9 [x(co)]q(e)  = ({X(o))l~(e)) 

Using this proper ty ,  we obtain  

x2(~o)(t)  = [[x~(co)]qlq(t) = s u p { a ;  [1,2(~o)]~(e) < t} 

= sup{a; ([X(co)]q(e)) 2 < t} 

Evidently X2(co)(t) = 0 for  t < 0. I f  t > 0, then 

X2(c~)(t) = sup{e; [X(o~)] q(e) < x / t )  = X(c~)(x/ t )  

This means  that  

{o ,5  if t_ o 
x~(c~ = x(co) (  ) i f  t > 0 

Due to (11) f rom this result and (16) we obtain  1 , 2 =  X .  X ~ x 2. �9 

Remark 2. We have shown that  for  the observable  x in Example  1, 
x 2 r  x "x.  Since x is nonnegat ive,  by Propos i t ion  1, x 2 ~ X .  X. There-  
fore x . x  + X . X .  This p roper ty  can be proved  in general for  each 
nonnegat ive,  noncrisp Too-fuzzy observable  x. 

All these results lead us to the convict ion that  a l though it makes  sense 
to define a p roduc t  o f  Too-fuzzy observables  by the fo rmula  (6), it is 
necessary to introduce this opera t ion  in ano ther  w a y - - b e c a u s e  of  the not  
good propert ies  of  the ment ioned  p roduc t  x . y  [given by (6)]. 
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Definition 4. Let x, y be nonnegative T~-fuzzy observables. The T~- 
fuzzy observable z defined by 

z ( (_oo ,  t)) = {0~ if t < 0  
r~o+[X((--o%r))Ay((--oo,  t/r))] if t > 0  (17) 

will be called the produc t of  x and y: z = x �9 y. 

We have to prove that Definition 4 is correct. For  this purpose it is 
enough to show that the system ~e = { z ( ( -  oo, t)); t e R) fulfills the proper- 
ties (P1)- (P3) .  

Lemma 4. Let x , y  be nonnegative T~-fuzzy observables and let 
x ~ X, y ~ Y. Then 

(x * y)(( - oo, t))(e)) = (X" Y)(o))(t) (18) 

for each t~[R, (n el2. 

Proof We omit the details because the assertion can be proved in the 
same way as Theorem 1. It is enough to replace the sums by products and 
to write t/r instead of (t - r). 

Since X - Y is a finite fuzzy random variable, it corresponds uniquely 
to a Too-fuzzy observable v. The correspondence is expressed by (11), i.e., 

v(( -- ~ ,  0)(o9) = (X" Y)(co)(t) 

for each t ~  and co~f~. 
The system ~ = {v(( - ~ ,  t)); t ~ N} of  fuzzy subsets fulfills the proper- 

ties (P1)- (P3) .  I f  we take into account (18), we obtain that also the system 
~e = { x  . y ( ( - o o ,  t ) ) ; tER} of fuzzy subsets fulfills (P1) (P3) (because 
~e = U).  So, this system determines uniquely a T~-fuzzy observable z and 
this fact implies that Definition 4 is correct. Moreover,  z = v and therefore 
the following assertion is true. 

Theorem 2. Let x, y be nonnegative Too-fuzzy observables and let 
x +--~X,y +-* Y. Then x . y  ~ X .  Y. 

Corollary 1. I f  x is a nonnegative To~-fuzzy observable, then 
X2 <----> X , X .  

Proof Let x0 < x and x ~ X. By Theorem 2, X - X ~ x * x. Accord- 
ing to Proposition 1, the fuzzy observable x 2 created by (3) corresponds to 
fuzzy random variable X .  X. From the uniqueness of  correspondence we 
obtain 

X * X = X  2 
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In the previous part  of  this section fuzzy random variables X~, a ~ ~, 
and T~-fuzzy observables x~ (corresponding to Xa) were introduced. Recall 
that 

XI: f ~  ~(I) ,  XI(CO) = lo,oo ) for each c o ~  

and 

0n if lq~E 
xl: N ( N ) ~ z ,  x l ( E ) =  in if l e E  

The fuzzy observable xl will be called the unit observable. 

Proposition 2. Let x be a nonnegative Too-fuzzy observable. Then 

x * xl = x and x * Xo =x0  

Proof. Let x0 ~ x and x ~ X. Let co ~ D be an arbitrary element. Then 

Xs  (co) = Xo(~) = l(o,oo) and X~- (co) = X1 (co) = l(1,oo) 

Therefore 

[XV(co)]q(c0 - -0  and [Xl+(OJ)]q(00 = 1 for each e s ( 0 ,  1) 

Let X(co) = p. Then 

x. xl  (co) = x(co) | x~ (co) = p | l(~,oo) 

Using (10) for multiplication of fuzzy numbers, we obtain 

[P | l(1.oo)]q(a) = sup {[p +] q(fl) + [p ]q(fl)} = [p]q(c 0 
]3<c~ 

for each c~(0,  1>. This means that X ' X 1  = X. This fact together with the 
result X . X ~  ~ x * x~ following from Theorem 2 makes the assertion 
x �9 Xl = x true. The validity of  the property x �9 x 0 is evident. 

Let us only note that Xl does not play the role of  a unit if the product  
of  Too-fuzzy observables is given by (6). 

Finally, we will propose how it is possible to define a product of  two 
arbitrary Too-fuzzy observables x and y. 

Each Too-fuzzy observable x can be uniquely expressed in the form 

X = X  + -}-X 

where x0 ~ x +, x -< Xo, and 

~x(E~(O, ~ ) )  if 0q~E 
x + ( E ) = [ x ( E w ( - o o ,  O)) if 0 s E  

f<x(Ec~(-oo, O)) if 0•E 
x ( E ) = [ x ( E w ( O ,  oo)) if 0 ~ E  

I f x 0 < x ,  t h e n x  + = x a n d x  =Xo. 

for each E e ~ ( R )  
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We propose to define the product  of T~-fuzzy observables in the 

following way: 
(1) For  x o - < x  and  x o ~ y  we define the product  x * y  by (17) in 

Defini t ion 4. 
(2) In  other cases let us put  

x , y =  (x  + + x - )  �9 ( y +  + y - )  

= Ix + - ( - x - ) ]  �9 [.v + - ( - y - ) ]  

= x  + , y + - ( - x - ) , y + - x  + , ( - y - ) + ( - x - ) , ( - r - )  

The observables x +, y + ,  - x - ,  - y -  are nonnegat ive  and  their products  
can be created by (17). The observables - x - ,  - y  and the difference of 

observables are created by (4) and (5). 
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